#!/usr/bin/env python3 """ Simple Asteroid Radio Performance Analysis Uses only matplotlib (no seaborn dependency) """ import pandas as pd import matplotlib.pyplot as plt import glob import os from datetime import datetime import numpy as np def load_performance_data(): """Load all CSV performance data files""" csv_files = glob.glob('performance-logs/*_data_*.csv') data_frames = {} for file in csv_files: # Extract test type from filename filename = os.path.basename(file) if 'aac' in filename: test_type = 'AAC 96kbps' elif 'mp3-high' in filename: test_type = 'MP3 128kbps' elif 'mp3-low' in filename: test_type = 'MP3 64kbps' else: test_type = filename.split('_')[1] try: df = pd.read_csv(file) df['test_type'] = test_type data_frames[test_type] = df print(f"āœ… Loaded {len(df)} records from {test_type} test") except Exception as e: print(f"āŒ Error loading {file}: {e}") return data_frames def create_simple_charts(data_frames): """Create simple performance charts""" # Create figure with subplots fig, axes = plt.subplots(2, 2, figsize=(15, 10)) fig.suptitle('Asteroid Radio Performance Analysis', fontsize=14) colors = ['#ff6b6b', '#4ecdc4', '#45b7d1'] # 1. CPU Usage Over Time ax1 = axes[0, 0] for i, (test_type, df) in enumerate(data_frames.items()): if 'cpu_percent' in df.columns: ax1.plot(range(len(df)), df['cpu_percent'], label=test_type, color=colors[i % len(colors)], linewidth=2) ax1.set_title('CPU Usage Over Time') ax1.set_xlabel('Time (samples)') ax1.set_ylabel('CPU %') ax1.legend() ax1.grid(True, alpha=0.3) # 2. Memory Usage Over Time ax2 = axes[0, 1] for i, (test_type, df) in enumerate(data_frames.items()): if 'memory_mb' in df.columns: ax2.plot(range(len(df)), df['memory_mb'], label=test_type, color=colors[i % len(colors)], linewidth=2) ax2.set_title('Memory Usage Over Time') ax2.set_xlabel('Time (samples)') ax2.set_ylabel('Memory (MB)') ax2.legend() ax2.grid(True, alpha=0.3) # 3. Average Performance Comparison ax3 = axes[1, 0] test_names = [] cpu_avgs = [] mem_avgs = [] for test_type, df in data_frames.items(): test_names.append(test_type.replace(' ', '\n')) cpu_avgs.append(df['cpu_percent'].mean() if 'cpu_percent' in df.columns else 0) mem_avgs.append(df['memory_mb'].mean() if 'memory_mb' in df.columns else 0) x = np.arange(len(test_names)) width = 0.35 ax3.bar(x - width/2, cpu_avgs, width, label='CPU %', color=colors[0], alpha=0.8) ax3_twin = ax3.twinx() ax3_twin.bar(x + width/2, mem_avgs, width, label='Memory MB', color=colors[1], alpha=0.8) ax3.set_title('Average Resource Usage') ax3.set_xlabel('Stream Type') ax3.set_ylabel('CPU %', color=colors[0]) ax3_twin.set_ylabel('Memory (MB)', color=colors[1]) ax3.set_xticks(x) ax3.set_xticklabels(test_names) # 4. Response Time Summary ax4 = axes[1, 1] response_summary = {} for test_type, df in data_frames.items(): stream_resp = df['stream_response_ms'].mean() if 'stream_response_ms' in df.columns else 0 web_resp = df['web_response_ms'].mean() if 'web_response_ms' in df.columns else 0 response_summary[test_type] = {'Stream': stream_resp, 'Web': web_resp} if response_summary: test_types = list(response_summary.keys()) stream_times = [response_summary[t]['Stream'] for t in test_types] web_times = [response_summary[t]['Web'] for t in test_types] x = np.arange(len(test_types)) ax4.bar(x - width/2, stream_times, width, label='Stream Response', color=colors[0], alpha=0.8) ax4.bar(x + width/2, web_times, width, label='Web Response', color=colors[1], alpha=0.8) ax4.set_title('Average Response Times') ax4.set_xlabel('Stream Type') ax4.set_ylabel('Response Time (ms)') ax4.set_xticks(x) ax4.set_xticklabels([t.replace(' ', '\n') for t in test_types]) ax4.legend() plt.tight_layout() plt.savefig('performance-logs/asteroid_performance_charts.png', dpi=300, bbox_inches='tight') print("šŸ“Š Charts saved as: performance-logs/asteroid_performance_charts.png") return fig def generate_text_report(data_frames): """Generate simple text report""" report = [] report.append("šŸŽµ ASTEROID RADIO PERFORMANCE REPORT") report.append("=" * 45) report.append(f"Generated: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}") report.append("") for test_type, df in data_frames.items(): report.append(f"šŸ“” {test_type}:") report.append("-" * 25) if 'cpu_percent' in df.columns: cpu_mean = df['cpu_percent'].mean() cpu_max = df['cpu_percent'].max() report.append(f" CPU: {cpu_mean:.1f}% avg, {cpu_max:.1f}% peak") if 'memory_mb' in df.columns: mem_mean = df['memory_mb'].mean() mem_max = df['memory_mb'].max() report.append(f" Memory: {mem_mean:.1f} MB avg, {mem_max:.1f} MB peak") if 'stream_response_ms' in df.columns: stream_resp = df['stream_response_ms'].dropna() if len(stream_resp) > 0: report.append(f" Stream Response: {stream_resp.mean():.1f} ms avg") if 'web_response_ms' in df.columns: web_resp = df['web_response_ms'].dropna() if len(web_resp) > 0: report.append(f" Web Response: {web_resp.mean():.1f} ms avg") report.append(f" Test Duration: {len(df)} samples") report.append("") # Summary report.append("šŸ“Š SUMMARY:") report.append("-" * 15) # Find most efficient stream cpu_usage = {} for test_type, df in data_frames.items(): if 'cpu_percent' in df.columns: cpu_usage[test_type] = df['cpu_percent'].mean() if cpu_usage: best = min(cpu_usage, key=cpu_usage.get) worst = max(cpu_usage, key=cpu_usage.get) report.append(f" Most efficient: {best} ({cpu_usage[best]:.1f}% CPU)") report.append(f" Most intensive: {worst} ({cpu_usage[worst]:.1f}% CPU)") total_samples = sum(len(df) for df in data_frames.values()) report.append(f" Total test samples: {total_samples}") report.append(f" Stream formats tested: {len(data_frames)}") # Save report with open('performance-logs/asteroid_simple_report.txt', 'w') as f: f.write('\n'.join(report)) print("šŸ“„ Report saved as: performance-logs/asteroid_simple_report.txt") return '\n'.join(report) def main(): print("šŸŽµ Asteroid Radio Performance Analyzer (Simple)") print("=" * 45) # Load data data_frames = load_performance_data() if not data_frames: print("āŒ No performance data found!") return # Create charts print("\nšŸ“Š Creating performance charts...") create_simple_charts(data_frames) # Generate report print("\nšŸ“„ Generating performance report...") report = generate_text_report(data_frames) print("\nāœ… Analysis complete!") print("\nFiles created:") print(" šŸ“Š performance-logs/asteroid_performance_charts.png") print(" šŸ“„ performance-logs/asteroid_simple_report.txt") if __name__ == "__main__": main()